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INTRODUCTION

The use of composite materials has increased steadily during the past two decades, particularly for
aerospace, underwater and automotive structures. This is largely because many composite materials exhibit ~
high strength-to-weight and stiffness-to-weight ratio, which make them ideally suited for use in weight-
sensitive structures. The elastic properties of composite materials maybe significantly different in
specimens manufactured under the same general specifications and may be different for the bulk material
from those in the laminate. Moreover, the elastic properties of composites may vary as a result of aging,
environmental degradation and other effects (e.g., matrix cracking) resulting in overstress and eventual
failure of the material. This variahility in the properties requires a careful material characterization before
composites are used in a structure. Conventional destructive techniques for the determination of the elastic
stiffness constants can be cost] y and often inaccurate; this is particularly true for the through-the-thicknes.s
properties. Nondestructive determination of the elastic properties allows the performance and reliability of
structure,

A systematic analytical method proposed by Mal et al [1], employing the leaky Lamb wave (LLW)
phenomenon, was found to be an effective method for the characterization of the clastic constants. The
model assumes that the composite consist of transversely isotropic layers and the experiment requires the use
of water immersion or water injection through squirters for the transmission of the ultrasonic signals, This
requirement for water coupling hampers the field applicability of the method and also limits the number of
constants that can be measured. Particularly, the constant ¢, is difficult to determine due to experimental
limitations. The application of a contact coupled guided wave method offers the potential for a practical
nondestruct ive characterizat ion method.

The theoretical and experimenta studies of guided wave propagat ion in composites have grown
considerably in recent years [2, 3]. For ahomogeneous composile laminate with the symmetric axis parallel
to the surfaces (Fig. 1), there are two Modes of propagation: symmetric and antisymmetric, The lowest
symmetric (Extensional) and ant asymmetric (flexural) modes arc the easiest to measure in an ultrasonic
experiment and their velocity value can be used to determine certain material const ants. German et al [4]
have developed an ultrasonic technique which is based on
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Figure 1. Definition of the geometrical variables of the symmetric and antisymmctric guided wave modes.

contact type transducer-pair arrangement that can be used to determine the dispersion curves of the low
frequency flexural mode, and the elastic properties. Unfortunately, the flexural wave signals are

mixed with reflected signals from the boundary if the lateral dimension of the specimen is small in relation to
the wavelength or the structure geometry is complex. In this case, only the Extensional male can be

identified clearly.

A systematic parameter studyis showingthat the stiffness constants ¢,;, ¢,,, ¢,3, ad ¢s5 have strong
influence on the dispersion curves for the lowest symmetric Extensional mode at low frequency range. In
Figure 2, the dispersion curve for the symmetric mode and wave propagation along the fiber direction is
plotted. In this Figure, the strong effect of varying ¢,, can be easily observed. In this reported study, a
detailed analysis of the low frequency symmetric guide waves was conducted and the results were

corroborated experiment al y.
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FORMULATION OF SYMMETRIC MODE DISPERSION CURVES

Linear Elastic Soluti

Generally, the dispersion equations for guided wave propagation in composite materials are very
,complicate and need to be solve numerically. The exact solution of dispersion curves for Lamb wave

propagation in orthotropic composite laminates has been derived by Mal [5], however the derived
equations are highly nonlinear and the numerical solution is computationa intensive. In the low frequency
range approximations can be made to simplify the solution for the lowest Extensional mode. A
unidirectional composite laminate is assumed transversely isotropic With, symmetric axis along the fiber
direction. The symmetry axis is defined as the xl-axis of the coordinate system and the stress-displacement
relations is'given explicit] y in Ref. [51, wherecll, €12 €22 Cas ¢ are the five independent real stiffness “
constants of the material. We also introduce five constants 4, @2 a,, a, and a related to ¢; and the density Of
the material, p through

a, = Cculp,a, = ¢,/psay = ¢y + Cs)/p

_ (1)
Ay = (c.. - Cu)/2p, a5 = cgslp
The dispersion equation for the symmetric mode can be expressed [5] as
A cot(C,wh) + A,cot({,wh)+ Ajcot((,wh) = 0 )

When frequency times thickness is approaching zero, i.e wH - O, then the dispersion equation becomes
A A A,
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Where the equation £Xc;;, n,, n,) =0 represents the dispersion equation of the limit of the lowest symmetric
mode.

a. For propagation along the symmetric axis (0°), the dispersion equation can be simplified as

(pV? - “55)(‘7229‘/2 + 0122 =€ Cy) " 0 (5)
and solved as
c
V,, = = (6)
' p




where V, represents the speed of the shear-horizontal SH, mode or quasi- transverse mode, and V, represent’

the symmetric mode SO or quasi- longitudinal mode. /
b. For propagation along the (hg) direction perpendicular to the symmetric axis (90°), the equation can be
simplifies as
2
(pV? - C55)(6‘22PV2 Tt Cl>23) =0 )
and solved explicitly as
c
V,, = 35 (8)
' p

For isotropic material, the solution can be reduced to the well know expression

c c c
Vi, = l_éi 2‘_5_5 1 - % 9)
p p n

b. Approximate Plate Theories

For the low frequency range of guided wave propagation in composite laminates, various
approximation models were proposed [8]. It is well known that classical plate theories underestimate the
deflections as well as the stresses and overestimate the phase velocity of the propagating waves. The error
associated with the calculation grows significantly with the increase in plate thickness or in the frequency.
Hence, for dynamic analysis of high values of thickness times frequency the classical plate theories are
inadequate for the anal ysis. Mindlin and others [7] proposed 4 improved approximation using the first order
shear deformation theory and retaining the transverse shear and rotary inertia of the plate elements. Based
on this theoretical approach the dispersion curves of the fist antisymmetric mode can be approximated very
closely to the exact solutions [8]. According to this theory, the displacement components are assumed to be
of theform

u, = ulo(xl, Xy f) + X397, (xp5 Xp0 1)
= 0
U, Uy (x;, X D+ 00, Xy, D (lo)
.0
U, =u3(x,, X,, )
where u’,, u% and u’, are the displacement components of a point in the mid-plane, and ¥, and , are the
rotations of a line element, originally perpendicular to the longitudina plane about the x, and x| axes,
respectively. However, based on this assumption, the lowest symmetric modes are nondispersive and are the
same as the results from the classical plate. This is the result of ignoring that v, and U,are even functions of
X3, and u; is an odd function of x, for the symmetric mode (Fig. 1 a). In order to obtain a high order
approximate symmetric mode dispersion curve, aterm x, {, isincluded in the out of plane displacement u,.
ul = ulu(xla x29 t)
0
U, = Uy (x;, X, 0 (12)
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Hence the governing equation for the symmetric mode can be written as
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Assume plane wave solutions as follows

u,°= u oe ithyx, + KXy -w)
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where k,, k, and k; represent the wavenumbers along the x,, X, and x; directions, respectively, and w is the
circular frequency. Hence, the dispersion equat ion can be derived from the following eigenvalue solution:
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wheren, = cos ¢ and n, = Sin g ; ¢ is the wave propagating angle, and k, = &'V n,, k, = @ /V n,, V isthe
phase velocity. A;B;; and D; are commonly used the generalized elastic parameters for composite laminate.
If the laminate is a transversely isotropic material, then from

I, =pH, 1, = pH¥12
Ay = optl, Ay = e, Ay = ol Ay = e, (15)

Dys = csslyfp, Dau = colyfp, iy = (07 C3)/2

the approximated dispersion equation can be expressed as
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When at the limit wH - O this equation is the same as equations (4). Note that high order approximations
Such as
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can lead to more accurate results but they will increase the complexity of the dispersion equations.

The measured wave velocity can be either the phase or the group velocity depending on the experimental set
and the value of the two maybe very different, particularly in composite materials. The group velocity V,
can be calculated from the characterist ic equation of the phase velocity by

3/
¢ oQ/oV

EXPERIMENTAL

The experiment? consists of a contact pitch catch arrangement, where the pulse source is induced by
breaking a pencil lead on the surface of the test composite. Three identical receiving transducers are placed
in contact with the composite laminate along one line that defines the angle of propagation and spaced at a
distance of 25 mm,apart. The transducers are broadband type with 5 MHZ center frequency (Digital Waves,
Model B 1000). For data acquisition, Fracture Wave Detector (Digital Waves, F4000) with four signal
conditioning modules were used. Each of the transducers was connected to a widecband preamplifier through
asignal conditioning module and the signals were - digitize and recorder at a rate of 3.125 MHZ to 25 MHZ.
A schematic view of the experimental setup is shown in Fig. 3.

The use of the pencil lead breaking method as the source. of signals was chosen since it forms signals with a

low frequency broadband spectra at the range of 50 to 100 kHz. The data for each signal was transferred to
a personal computer for analysis and measurement were made along different directions
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with the fibersin 15° intervals from 0" to 90°. The transducers were placed along the propagation direction
with distance 25 mm 50 mm, and 75 mm from the source. At the various directions of the transducers
placement, the group velocity was determined from the time-of-flight measurement using the time arrival of
the first received signal. g

A [0],6 12 x 12 cm?® unidirectional AS4/3502 (Hercules) graphitc/epoxy laminate was used in the
experiment. The laminate was produced using standard hot-press curing technique leading to a laminate
thickness of 3.175 mm. For the inversion of ¢,, and ¢;,, the material density of p =1.56 g/em’® was used and
the matrix dominated material constants c¢,,, ¢;3, and ¢;; were predetermined using the inversion technique
that is described in Ref. [1] as

¢, =15.6, ¢,3 =7.89, g5 =5.00 (GPa)
RESULTS AND CONCLUDING REMARKS

Dispersion curves for the exact and approximate solution of the symmetric mode are shown in
Figure 4. This Figure'is showing the phase velocity of wave propagation in a unidirectional graphite/epoxy
along 45° with the fibers. It can be seen that the shear deformation approximate solution agrees with the
exact solutions for the frequency times the thickness;is below 0.7 MHZ-mm. Further, this approximation
allows the calculation of modes that can not be obitained us ng the classical plate theory.

The measured and calculated group velocity for wave propagation along the 0° to 90° with the fibers
are present cd in Fig. 5. The elastic constants ¢, ,, ¢;, were det ermined by inversion of the measured group
velocity and they are:

¢,, =155.01, ¢,, =6.44, (GPa)

It can bc seen that the calculated curves fit the experimental data quite well. However, it is known that the
group velocity of the Extensiona mode in this frequency range may not be sensitive to some of the elastic
constants. In order to characterize the material constants from the measured group velocity, a parametric
study was carried out and are’presented in Fig. 6. From this Figure, onc can easil y sce that ¢, has the
strongest effect on the group velocity curve near the 0“ with X-axis and decreasing toward zero at about 45°.
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Figure 5. Mcasured Propagation Angle (Degree) and calculated group velocity for
the Extensional mode AL waves propagating in a
unidirectional S graphite/epoxy plate of 3.175 mm
thickness from O 1090° to the fibers.
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Figure 6. Influence of the stiffness constants ¢; on
group velocity for the lowest symmetric mode of a unidirectional graphite/epoxy laminate.
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